Particle motion in Stokes flow near a plane fluidfluid interface. Part 2. Linear shear and axisymmetric straining flows

نویسنده

  • GARY LEAL
چکیده

We consider the motion of a sphere or a slender body in the presence of a plane fluid-fluid interface with an arbitrary viscosity ratio, when the fluids undergo a linear undisturbed flow. First, the hydrodynamic relationships for the force and torque on the particle at rest in the undisturbed flow field are determined, using the method of reflections, from the spatial distribution of Stokeslets, rotlets and higher-order singularities in Stokes flow. These fundamental relationships are then applied, in combination with the corresponding solutions obtained in earlier publications for the translation and rotation through a quiescent fluid, to determine the motion of a neutrally buoyant particle freely suspended in the flow. The theory yields general trajectory equations for an arbitrary viscosity ratio which are in good agreement with both exact-solution results and experimental data for sphere motions near a rigid plane wall. Among the most interesting results for motion of slender bodies is the generalization of the Jeffrey orbit equations for linear simple shear flow.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows

An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...

متن کامل

Particle motion in Stokes flow near a plane fluid-fluid interface. Part 1. Slender body in a quiescent fluid

The present study examines the motion of a slender body in the presence of a plane fluid-fluid interface with an arbitrary viscosity ratio. The fluids are assumed to be at rest at infinity, and the particle is assumed to have an arbitrary orientation relative to the interface. The method of analysis is slender-body theory for Stokes flow using the fundamental solutions for singularities (i.e. S...

متن کامل

Application of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries

In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...

متن کامل

Critical behavior of drops in linear flows. I. Phenomenological theory for drop dynamics near critical stationary states

The dynamics of viscous drops in linear creeping flows are investigated near the critical flow strength at which stationary drop shapes cease to exist. According to our theory the near-critical behavior of drops is dominated by a single slow mode evolving on a time scale that diverges at the critical point with exponent 1/2. The theory is based on the assumption that the system undergoes a sadd...

متن کامل

Dynamics of a trapped Brownian particle in shear flows.

The Brownian motion of a particle in a harmonic potential, which is simultaneously exposed either to a linear shear flow or to a plane Poiseuille flow is investigated. In the shear plane of both flows the probability distribution of the particle becomes anisotropic and the dynamics is changed in a characteristic manner compared to a trapped particle in a quiescent fluid. The particle distributi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005